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SITUATION ANALYSIS 
 
 

 
Most critical problem for MFE:  avoid/mitigate large-scale major disruptions   
• Approach:  Use of  big-data-driven statistical/machine-learning (ML) predictions for the 
occurrence of disruptions in EUROFUSION facility “Joint European Torus (JET)” 
• Current Status:  ~ 8 years of R&D results (led by JET) using Support Vector Machine 
(SVM) ML on zero-D time trace data executed on CPU clusters yielding ~ reported 
success rates in mid-80% range for JET 30 ms before disruptions , BUT > 95% with 
false alarm rate < 3% actually needed for ITER (Reference – P. DeVries, et al. (2015)  
• Princeton Team Goals include:  
(i) improve physics fidelity via development of new ML multi-D, time-dependent 
software including better classifiers;   
(ii) develop “portable” (cross-machine) predictive software beyond JET to other 
devices and eventually ITER;  and  
(iii) enhance execution speed of disruption analysis for very large datasets  
        à development & deployment of advanced ML software via Deep Learning 
Recurrent Neural Networks 
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Mazon, Didier, Christel Fenzi, and Roland Sabot. "As hot as it gets." Nature Physics 12.1 (2016): 14-17. 

Higher Dimensional Signals 
 

• At each timestep: arrays instead of 
scalars 
• All as a function of ρ (normalized 

flux surface) 
• Examples: 

– 1D Current profiles 
– 1D Electron temperature profiles 
– 1D Radiation profiles 

Challenges	&	Opportuni2es		



Identify 
Signals 

• Classifiers 

Preprocessing 
and feature 
extraction 

Train model, 
Hyper parameter 

tuning 

All data placed on appropriate 
numerical scale ~ O(1) 
e.g.,  Data-based with all 
signals divided by their 
standard deviation 
 
 

Princeton/PPPL DL 
predictions now advancing 
to multi-D time trace 
signals (beyond zero-D) 

Machine Learning Workflow 

Normalization 

Measured sequential data 
arranged in patches of 
equal length for training 
 

Use model for 
prediction 

• All available data analyzed; 
• Train LSTM (Long Short Term 
Memory Network) iteratively; 
• Evaluate using ROC (Receiver 
Operating Characteristics) and 
cross-validation loss for every 
epoch (equivalent of entire data 
set for each iteration)  

Apply ML/DL software on 
new data 



JET Disruption Data   

# Shots Disruptive Nondisruptive Totals 

Carbon Wall 324 4029 4353 

Beryllium 
Wall (ILW) 

185 1036 1221 

Totals 509 5065 5574 

Sample 7 Signals of zero-D time 
traces  (07) 

Data Size (GB) 

Plasma Current 1.8 

Mode Lock Amplitude 1.8 

Plasma Density 7.8 

Radiated Power 30.0 

Total Input Power 3.0 

d/dt Stored Diamagnetic Energy 2.9 

Plasma Internal Inductance 3.0 

JET produces ~  
Terabyte (TB) of   

data per day 

  
~55 GB data 

collected from 
each JET shot 

 
➔ Well over 350 TB total 

amount with multi-    
dimensional data yet to 

be analyzed 



Deep Recurrent Neural Networks (RNNs):  Basic Description 
 ●  “Deep” 

○  Hierarchical representation of complex data, building up salient features 
automatically 

○  Obviating the need for hand tuning, feature engineering, and feature selection 
●  “Recurrent” 

○  Natural notion of time and memory à i.e., at every time-step, the output depends on 
■  Last Internal state “s(t-1)” Recurrence! 
■  Current input x(t) 

○  The internal state can act as memory and accumulate information of what has 
happened in the past 

Image	adapted	from:	colah.github.io	

Internal	
State	
(“memory/	
context”)	



FRNN (“Fusion Recurrent Neural Net”)  Code Performance (ROC Plot) 
 

True	Posi8ves:	93.5%	
False	Posi8ves:	7.5%	

True	Posi8ves:	90.0%	
False	Posi8ves:	5.0%	

Performance Tradeoff: Tune True Positives (good: correctly caught disruption) vs. False 
Positives (bad: safe shot incorrectly labeled disruptive). 

RNN Data: 
●  Testing 1200 shots 

from Jet ILW 
campaigns (C28-C30) 

●  All shots used, no 
signal filtering or 
removal of shots 

Jet SVM* work: 
●  990 shots from same 

campaigns 
●  Filtering of signals, 

ad hoc removal of 
shots with abnormal 
signals 

●  TP 80 to 90%, FP 5% 

*Vega, Jesús, et al. "Results of the 
JET real-time disruption predictor in 
the ITER-like wall campaigns." Fusion 
Engineering and Design 88.6 (2013): 
1228-1231. 



RNNs:		HPC	Innova2ons	Engaged	
 GPU training  

● Neural networks use dense tensor manipulations, efficient use of GPU FLOPS 
● Over 10x speedup better than multicore node training (CPU’s) 
 
 Distributed Training via MPI 
Linear scaling: 
● Key benchmark of “time to accuracy”: we can 
train a model that achieves the same results 
nearly N times faster with N GPUs 
Scalable 
● to 100s or >1000’s of GPU’s on Leadership 
Class Facilities 
● TB’s of data and more  
● Example: Best model training time on full 
dataset (~40GB, 4500 shots) of 0D signals 
training 

○  SVM (JET) : > 24hrs 
○  RNN ( 20 GPU’s) : ~40min 

 



Fusion Recurrent Neural Net (FRNN) Description 

•  Python deep learning code for disruption prediction in fusion (tokamak) 
experiments  
–  Reference: https://github.com/PPPLDeepLearning/plasma-python 

•  Implements distributed data parallel synchronous RNN training  
–  Tensorflow & Theano backends  

with MPI for communication 
–  FRNN code workflow is characteristic  

of typical distributed deep learning software 
–  Core modules: 

•  Models: Python classes necessary to construct, train,  
and optimize deep RNN models.   

•  Pre-process: arrange data into patches for stateful training; normalize 
•  Primitives: Python objects for key plasma physics abstractions 
•  Utils: a set of auxiliary functions for pre-processing, performance evaluation, and 

learning curves analysis 



Runtime: computation time  

Parallel Efficiency 

Communication: each batch of data requires time for synchronization 

Scaling Summary 



FRNN Scaling Results on GPU’s  

•  Tests on OLCF Titan CRAY supercomputer 
–  OLCF DD AWARD:  Enabled Scaling Studies on  
   Titan currently up to 6000 GPU’s 
–  Total ~ 18.7K Tesla K20X Kepler GPUs 
 
     Tensorflow+MPI  



 
 
 

                     CURRENT PERSPECTIVE 
 
Forecasting disruptions using machine learning is an important 
application of a general idea: 
 
 à Use multi outcome prediction to distinguish disruption 
types/scenarios 
  
 à Beginning now to move from prediction to active control 

 (including new collaborations on DIII-D – R. Buttery, T. Strait, N. Logan, 
R. Nazikian, …..)  

  
 à Increasingly large and diverse data sets require building 
      scalable systems to take advantage of leadership class  
      computing facilities 
 



        Fusion Deep Learning (FRNN) Technical Summary 
 
• FRNN à a distributed data-parallel approach to train deep neural networks 
(stacked LSTM’s);  
• Replica of the model is kept on each “worker” à processing different mini-
batches of the training dataset in parallel;  
• Results on each worker are combined after each epoch using MPI; 
• Model parameters are synchronized via parameter averaging à with 
learning rate adjusted after each epoch to improve convergence   
• Stochastic gradient descent (SGD) used for large-scale optimization with 
parallelization via mini-batch training to reduce communication cost.  
à Challenge:  scaling studies to examine if convergence rate saturates/

decreases with increasing mini-batch size (to thousands of GPU’s).  
à Targeted Large HPC Systems with P-100’s for Performance Scaling 

Studies:  (1) “PIZ-DAINT” Cray XC50 @ CSCS (Switzerland) with > 4K 
GPU’S; (2) “SATURN V” @ NVIDIA with ~ 1K GPU’s; (3) “TSUBAME 3” @ 
TITECH with ~ 3K GPU’s; & (4) “SUMMIT-DEV” @ OLCF.   



 
 
 
 
• Fusion Energy Mission:   
  -- Accelerate demonstration of the scientific & technical  feasiblity of delivering Fusion Power  
  -- Most critical associated problem is to avoid/mitigate large-scale major disruptions. 
 
• ML Relevance to HPC:   
 -- Rapid Advances  on development of predictive methods via large-data-driven “machine- 
    learning” statistical methods  
 -- Approach Focus:   Deep Learning/Recurrent Neural Nets (RNNs)  
-- Significance:   Exciting alternative predictive approach to “hypothesis-driven/first 
   principles” exascale predictive methods   
-- Complementarity:   Physics-centric path-to-exascale HPC needed to introduce/establish 
improved Supervised ML Classifiers with associated features 
   
• Associated Challenge: 
→  Improvements over zero-D SVM-based machine-learning needed to achieve  > 95% 
success rate, <5% false positives at least 30 ms before disruptions -- with portability of software 
to ITER via enhanced physics fidelity (capturing multi-D) with improvement in execution time 
enabled by access to advanced HPC hardware (e.g., large GPU systems). 
 
 

Fusion Big Data ML/DL Application Summary   
    


